A lithium-ion-active aerolysin nanopore for effectively trapping long single-stranded DNA
نویسندگان
چکیده
منابع مشابه
Detecting single stranded DNA with a solid state nanopore.
Voltage biased solid-state nanopores are used to detect and characterize individual single stranded DNA molecules of fixed micrometer length by operating a nanopore detector at pH values greater than approximately 11.6. The distribution of observed molecular event durations and blockade currents shows that a significant fraction of the events obey a rule of constant event charge deficit (ecd) i...
متن کاملSingle Stranded DNA Translocation Through a Fluctuating Nanopore
We investigate the translocation of a single stranded DNA (ssDNA) through a pore, which fluctuates between two conformations, by using coupled master equations (ME). The probability density function (PDF) of the first passage times (FPT) of the translocation process is calculated, displaying a triple, double or mono-peaked behavior, depending on the system parameters. An analytical expression f...
متن کاملTrapping DNA near a solid-state nanopore.
We demonstrate that voltage-biased solid-state nanopores can transiently localize DNA in an electrolyte solution. A double-stranded DNA (dsDNA) molecule is trapped when the electric field near the nanopore attracts and immobilizes a non-end segment of the molecule across the nanopore orifice without inducing a folded molecule translocation. In this demonstration of the phenomenon, the ionic cur...
متن کاملEntropic cages for trapping DNA near a nanopore.
Nanopores can probe the structure of biopolymers in solution; however, diffusion makes it difficult to study the same molecule for extended periods. Here we report devices that entropically trap single DNA molecules in a 6.2-femtolitre cage near a solid-state nanopore. We electrophoretically inject DNA molecules into the cage through the nanopore, pause for preset times and then drive the DNA b...
متن کاملElectrical signatures of single-stranded DNA with single base mutations in a nanopore capacitor
In this paper, we evaluate the magnitude of the electrical signals produced by DNA translocation through a 1 nm diameter nanopore in a capacitor membrane with a numerical multi-scale approach, and assess the possibility of resolving individual nucleotides as well as their types in the absence of conformational disorder. We show that the maximum recorded voltage caused by the DNA translocation i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Chemical Science
سال: 2019
ISSN: 2041-6520,2041-6539
DOI: 10.1039/c8sc03927e